Do Now
Read and answer the questions
The Mathematical Art of M.C. Escher
Tessellation
Regular divisions of the plane, called tessellations, are arrangements of closed shapes that completely cover the plane without overlapping and without leaving gaps. Typically, the shapes making up a tessellation are polygons or similar regular shapes, such as the square tiles often used on floors. Escher, however, was fascinated by every kind of tessellation—regular and irregular—and took special delight in what he called “metamorphoses,” in which the shapes changed and interacted with each other, and sometimes even broke free of the plane itself.
His interest began in 1936, when he traveled to Spain and viewed the tile patterns used in the Alhambra. He spent many days sketching these tilings, and later claimed that this “was the richest source of inspiration that I have ever tapped.”
MCEscher created Tessellations using the regular polygons, the triangle, square, and hexagon.
Escher exploited these basic patterns in his tessellations, applying what geometers would call reflections, glide reflections, translations, and rotations to obtain a greater variety of patterns. He also elaborated these patterns by distorting the basic shapes to render them into animals, birds, and other figures. These distortions had to obey the three, four, or six-fold symmetry of the underlying pattern in order to preserve the tessellation. The effect can be both startling and beautiful.
http://platonicrealms.com/minitexts/Mathematical-Art-Of-M-C-Escher/
Regular divisions of the plane, called tessellations, are arrangements of closed shapes that completely cover the plane without overlapping and without leaving gaps. Typically, the shapes making up a tessellation are polygons or similar regular shapes, such as the square tiles often used on floors. Escher, however, was fascinated by every kind of tessellation—regular and irregular—and took special delight in what he called “metamorphoses,” in which the shapes changed and interacted with each other, and sometimes even broke free of the plane itself.
His interest began in 1936, when he traveled to Spain and viewed the tile patterns used in the Alhambra. He spent many days sketching these tilings, and later claimed that this “was the richest source of inspiration that I have ever tapped.”
MCEscher created Tessellations using the regular polygons, the triangle, square, and hexagon.
Escher exploited these basic patterns in his tessellations, applying what geometers would call reflections, glide reflections, translations, and rotations to obtain a greater variety of patterns. He also elaborated these patterns by distorting the basic shapes to render them into animals, birds, and other figures. These distortions had to obey the three, four, or six-fold symmetry of the underlying pattern in order to preserve the tessellation. The effect can be both startling and beautiful.
http://platonicrealms.com/minitexts/Mathematical-Art-Of-M-C-Escher/
Class Objective
choose your color scheme that you will use for your pattern. 3 to 4 colors
Begin patterning with your tile.
Begin patterning with your tile.